
1 List of Important Terminologies

1. Marginal likelihood P (s|α), under Bayesian framework, parameter θ being marginalized out.

2. Posterior distribution P (θ, t|s, α)

2 Starting from MLE over Hidden Parse Trees

Objective: We want to learn an optimal θ, a probability distribution over rewrite rules in PCFG,
given observed sentences s i.e.

arg max
θ

P (s, t|θ)

where parse trees t are hidden. How do we do that? Let’s start from not considering Bayesian
framework. One approach is to use maximum likelihood estimation over hidden parse trees. We
will try to learn θ that maximizes the marginal likelihood P (s|θ) =

∑
t P (s, t|θ) with EM algorithm

(known as “inside-outside algorithm”).

1. Predict the parse trees given θ [4].

2. Maximize θ [4].

3. Repeat 1. and 2. till convergence.

3 Applying Bayesian Framework over Hidden Parse Trees

Then, let’s consider applying Bayesian framework and try to aim for maximizing the posterior
distribution P (θ|s):

P (θ|s) ∝ P (s|θ)P (θ)

Use Dirichlet prior on each θA (where A is a non-terminal):

θA ∼ Dirichlet(αA)

As a result of including Dirichlet prior, θ now depends on a hyper-parameter α of a Dirichlet
distribution. Thus, the posterior distribution P (θ|s) can be rewritten as [3]:

P (θ|s, α) ∝ P (s|θ)P (θ|α)

Assume that s is distributed as Multinomial i.e. s ∼ Multinomial(θ). Then, the posterior
P (θ|s) or P (θ|s, α) is also distributed as Dirichlet:

θ|s ∼ Dirichlet(ft + α)

where ft is the vector of production counts in t indexed by r ∈ R [6]. This is intuitive result too
since we can directly reflect the number of times we observed a rule in the training data.
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4 Training Bayesian PCFG under supervised and unsupervised
setting

Under supervised setting, since the data consists of parse trees t [3], simply replace s by t:

P (s|θ) = P (t|θ) =
∏
i

P (ti|θ)

Under unsupervised setting, we regard the parse tree t as a latent variable, theta as a parameter.
Since the data consists of sentences s,

P (s|θ) =
∏
i

P (si|θ) =
∏
i

∑
ti∈T :yield(ti)=si

P (ti|θ)

Moreover, in unsupervised setting, we are also interested in knowing the parse trees t for given
sentences s. So the posterior P (θ|s, α) becomes:

P (θ|s, α) =
∑
t

P (t, θ|s, α)

In conclusion, under both unsupervised setting with Bayesian framework, our objective is to
compute the posterior P (t, θ|s, α) using Dirichlet prior with hyper-parameter α.

5 Marginal Likelihood vs. Joint likelihood

Once again, θ ∼ Dirichlet(α). In general, marginal likelihood is a likelihood function in which
some parameter variables are marginalized out. Note that marginal likelihood

when a variable θ is marginalized out.

arg max
θ

L(θ|X) = P (X|θ) = arg max
θ

n∏
i=1

∑
y∈ΩY

P (y|θ)P (xi|y, θ).

5.1 Why Marginal Likelihood?

Since outputs (= labels) are not given in latent variable models [9], we cannot compute the joint
likelihood of inputs and outputs. Therefore, we would like to compute the marginal likelihood (by
summing over all outputs for a given input) [1]. If we are using EM to learn the rule probabilities,
then it attempts to maximize the marginal likehood of inputs [1].

Note that marginal likelihood can appear in either Bayesian framework or non-Bayesian frame-
work.

6 Summary of Parameter Learning [5]

Here, we assume that the prior is dirichlet distribution, likelihood is multinomial distribution, and
therefore, the posterior distribution is also Dirichlet distribution.

labeled data (=Parse trees known) unlabeled data (= Parse trees unknown)

ML frequency EM

Bayesian updated Dirichlet distribution MCMC/VB
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7 Do you understand the difference between MAP and Bayesian
approach?

“Both ML and MAP return only single and specific values for the parameter θ. Bayesian estimation,
by contrast, calculates fully the posterior distribution P (θ|X).” [7].

8 Key Features

1. PCFG

2. Bayesian Framework

3. Variational Bayes, Gibbs sampling, particle filter

4. Unsupervised (parse trees not observed)

9 Sparse Grammar = Sparse Dirichlet Prior

1. “Our results illustrate that Bayesian inference using a prior that favors sparsity can produce
linguistically reasonable analyses in situations in which EM does not.” [6].

2. “This ability to bias the sampler toward sparse grammars (i.e., grammars in which many
productions have probabilities close to 0) is useful when we attempt to identify rele-
vant productions from a much larger set of possible productions via parameter
estimation” [6].

3. “Thus in this application the ability to prefer sparse grammars enables us to find linguistically
meaningful analyses. This ability to find linguistically meaningful structure is relatively rare
in our experience with unsupervised PCFG induction” [6].

4. “We found that for α > 10−2 the samples produced by the Hastings algorithm were the same
trivial analyses as those produced by the IO algorithm, but as α was reduced below this t
began to exhibit nontrivial structure” [6].

10 Misc. Notes

1. In a supervised setting, a tree t and a sentence s are both observable.

2. Geometric distibution, Binomial disctribution all have Dirichelt distribution as its conjuguate
priors (or multi-dimensional beta distributions)

3. Using sparse Dirichlet priors (α < 1) is the key. (Encouraging majority of values will be
concentrated in a few of the values)

4. Why VB instead of MCMC? 1) Scaling or training on large amount of data is easier. It can
also be applied to two level hierarchical Bayesian models, but not to the multiple levels of
hierarchical Bayesian models. In that case, MCMC is good at it.
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11 Future Studies

1. Read [2] and [8].

2. Variational Inference, Gibbs sampling, and particle filter in general.

3. Start from assuming that the parse trees t are observed. Then, study about the Bayesian
framework applied to PCFG.

4. Review the NLP lectures by Chris Manning on Coursera (Assignment PDFs are available at
http://www.mohamedaly.info/teaching/cmp-462-spring-2013)

5. Why marginal likelihood is important when we want to estimate the posterior using Varia-
tional Bayes?
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