
1 Summary

This is a note for [2]. Let’s start from Naive Bayes classifier.

P (word = w|class = k) =
exp(ηkw)∑
v exp(ηkv)

The important part is ηkw ∈ R, which allows ηkw to take negative values too. If we directly
model the probability pkw = # word w in class k

# words in class k , then it has the limitation that 1) 1 ≥ pkw ≥ 0

and 2)
∫
Ω pkw = 1. This technique is called “natural parameterization”, which is denoted as

ηkw = log(pkw) + c where c is a constant value. Also note that log-linear models are easy when
because the log transformation makes the objective function as a sum and it is easy to take the
derivatives when compared to a product.

P (w|yd,m, η) =
exp(m+ ηyd)∑
i(mi + nyd,i)

Now, the prior is no longer limited to Dirichlet distribution. For example, a prior can be a
Gaussian distribution η ∼ N(0,Σ) where Σ can encode the similarity between words.

In the SAGE paper [2], Laplace prior or double exponential distribution (also see the graph at
[1]) is used to produce sparsity. Sparsity also encourages interpretability because we can now focus
on fewer parameters (or words).
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