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At a Glance

Pretrained multilingual models enable zero-shot learning even for

Results: Diverse Languages Results up to 100 Languages

Limitations in the First Set of Experiments

unseen languages. and that performance can be further improved = Average cross-lingual zero-shot accuracy increases up to some point

= Computationally intensive

via adaptation prior to finetuning. 4 o 1
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zero-shot performance on unseen target languages? 9 seen Languages
» Does the answer to that question change with model é 0.1 = Use the following pretrained models in addition to the pretrained
dantation? < language models up to 10 languages
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P £ = XLM-17 (17 languages, pretrained on full Wikipedia) [5]
= Do the findings for our first question change if the languages E » XLM-100 (100 languages, pretrained on full Wikipedia) [5]
used for pretraining are all related? ¥ 0- | | | | | | | | | | » XLM-R base (100 languages, pretrained on Common Crawl) [6]
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of pretraining languages yields better results up to adding
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on a larger number of languages often gives further &0 1 > 050
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» Choice of pretraining languages

Results: Model Adaptation

= Diverse set of languages (Div-X)
= Related set of languages (Rel-X)

= Downstream Tasks: POS, NER, NLI = Trend 1: More languages are better (French and Farsi)
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= Task Dataset: XTREME [2] = Trend 2: More languages does not necessarily improve (Vietnamese 0-20- ll = =
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After Adaptation
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